
GWD-R (draft-ggf-ogsi-gridservice-04) S. Tuecke, ANL
Open Grid Service Infrastructure (OGSI) K. Czajkowski, USC/ISI
http://www.ggf.org/ogsi-wg I. Foster, ANL
 J. Frey, IBM
 S. Graham, IBM
 C. Kesselman, USC/ISI
 P. Vanderbilt, NASA

 October 4, 2002

ogsi-wg@gridforum.org 1

Grid Service Specification

Status of this Memo
This document provides information to the community regarding the specification of an OGSA
Grid service. Distribution of this document is unlimited. This is a DRAFT document and
continues to be revised.

Abstract
Building on both Grid and Web services technologies, the Open Grid Services Architecture
(OGSA) defines mechanisms for creating, managing, and exchanging information among entities
called Grid services. Succinctly, a Grid service is a Web service that conforms to a set of
conventions (interfaces and behaviors) that define how a client interacts with a Grid service.
These conventions, and other OGSA mechanisms associated with Grid service creation and
discovery, provide for the controlled, fault resilient, and secure management of the distributed
and often long-lived state that is commonly required in advanced distributed applications. In a
separate document, we have presented in detail the motivation, requirements, structure, and
applications that underlie OGSA. Here we focus on technical details, providing a full
specification of the behaviors and Web Service Definition Language (WSDL) interfaces that
define a Grid service.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 2

GLOBAL GRID FORUM

office@gridforum.org
www.ggf.org

Full Copyright Notice
Copyright © Global Grid Forum (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to the GGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the GGF Document process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property Statement
The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director (see
contact information at GGF website).

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 3

Contents
1 Introduction ... 5
2 Notational Conventions... 5
3 Setting the Context .. 6

3.1 Relationship to Distributed Object Systems.. 6
3.2 Client-Side Programming Patterns.. 7
3.3 Relationship to Hosting Environment ... 8

4 The Grid Service ... 10
4.1 WSDL Extensions and Conventions ... 10
4.2 Service Description and Service Instance ... 11
4.3 Modeling Time in OGSA.. 12
4.4 Service Data Concept .. 12

4.4.1 serviceData .. 15
4.4.2 serviceDataDescription ... 17
4.4.3 serviceDataSet and Instance Service Data .. 19
4.4.4 XML Element Lifetime Declaration Properties .. 20
4.4.5 The wsdlLocation attribute.. 22

4.5 Interface Naming and Change Management... 23
4.5.1 The Change Management Problem... 23
4.5.2 Naming Conventions for Grid Service Descriptions................................. 24

4.6 Naming Grid Service Instances: Handles and References 24
4.6.1 Grid Service Reference (GSR).. 24

4.6.1.1 WSDL Encoding of a GSR ... 26
4.6.2 Grid Service Handle (GSH) .. 26

4.6.2.1 Service Instance Sameness.. 27
4.6.3 XML types for handles, references and locators....................................... 27

4.7 Grid Service Lifecycle .. 27
4.8 Common Handling of Operation Faults .. 28

5 Grid Service Interfaces.. 28
6 The GridService PortType .. 29

6.1 GridService PortType: Service Data Descriptions and Elements 29
6.2 GridService PortType: Operations and Messages... 31

6.2.1 GridService :: FindServiceData .. 31
6.2.1.1 queryByServiceDataName.. 32
6.2.1.2 queryByXPath ... 32
6.2.1.3 queryByXQuery .. 32

6.2.2 GridService :: RequestTerminationAfter .. 32
6.2.3 GridService :: RequestTerminationBefore.. 33
6.2.4 GridService :: Destroy... 34

7 The HandleResolver PortType .. 34
7.1 HandleResolver PortType: Service Data Descriptions 35
7.2 HandleResolver PortType: Operations and Messages 35

7.2.1 HandleResolver :: FindByHandle ... 35
8 Notification.. 36

8.1 The NotificationSource PortType ... 37
8.1.1 NotificationSource PortType: Service Data Descriptions and Elements .. 37

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 4

8.1.2 NotificationSource PortType: Operations and Messages 37
8.1.2.1 NotificationSource :: Subscribe .. 37

8.2 The NotificationSubscription PortType .. 39
8.2.1 NotificationSubscription PortType: Service Data Descriptions 39
8.2.2 NotificationSubscription PortType: Operations and Messages 39

8.3 The NotificationSink PortType ... 39
8.3.1 NotificationSink PortType: Service Data Descriptions 40
8.3.2 NotificationSink PortType: Operations and Messages 40

8.3.2.1 NotificationSink :: DeliverNotification... 40
8.4 Integration With Notification Intermediaries .. 40

9 The Factory PortType.. 41
9.1 Factory PortType: Service Data Descriptions... 42
9.2 Factory PortType: Operations and Messages.. 42

9.2.1 Factory :: CreateService .. 42
10 Registration ... 43

10.1 WS-Inspection Document ... 43
10.2 The Registration portType .. 43

10.2.1 Registration PortType: Service Data Descriptions.................................... 44
10.2.2 Registration PortType: Operations and Messages 44

10.2.2.1 Registration :: RegisterService.. 44
10.2.2.2 Registration :: UnregisterService .. 45

11 Security Considerations... 45
12 Change Log ... 45

12.1 Draft 1 (2/15/2002) � Draft 2 (6/13/2002) .. 45
12.2 Draft 2 (6/13/2002) � Draft 3 (07/17/2002) .. 46
12.3 Draft 3 (07/17/2002) � Draft 4 (10/1/2002) .. 46

13 Author Information ... 47
14 Acknowledgements ... 48
15 Glossary... 48
16 References ... 48

16.1 Normative References ... 48
16.2 Informative References ... 49

17 XML and WSDL Specifications ... 50

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 5

1 Introduction
The Open Grid Services Architecture (OGSA) [Grid Physiology] integrates key Grid
technologies [Grid Book, Grid Anatomy] (including the Globus Toolkit [Globus Oveview]) with
Web services mechanisms [Web Services Book] to create a distributed system framework based
around the Grid service. A Grid service instance is a (potentially transient) service that conforms
to a set of conventions (expressed as WSDL interfaces, extensions, and behaviors) for such
purposes as lifetime management, discovery of characteristics, notification, and so forth. Grid
services provide for the controlled management of the distributed and often long-lived state that is
commonly required in sophisticated distributed applications. OGSA also introduces standard
factory and registration interfaces for creating and discovering Grid services.

In this document, we propose detailed specifications for the conventions that govern how clients
create, discover, and interact with a Grid service. That is, we specify (a) how Grid service
instances are named and referenced, (b) the interfaces (and associated behaviors) that define any
Grid service and (c) the additional (optional) interfaces and behaviors associated with factories
and registries. We do not address how Grid services are created, managed, and destroyed within
any particular hosting environment. Thus, services that conform to this specification are not
necessarily portable to various hosting environments, but they can be invoked by any client that
conforms to this specification (of course, subject to policy and compatible protocol bindings).

Our presentation here is deliberately terse, in order to avoid overlap with [Grid Physiology]. The
reader is referred to [Grid Physiology] for discussion of motivation, requirements, architecture,
relationship to Grid and Web services technologies, other related work, and applications.

This document is a work in progress and feedback is encouraged. Future versions will
incorporate additional pedagogical text and examples. We also draw the reader’s attention to
various “Notes” that indicates areas of particular uncertainty.

2 Notational Conventions
The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be
interpreted as described in RFC-2119 [RFC 2119].

This specification uses namespace prefixes throughout; they are listed in Table 1. Note that the
choice of any namespace prefix is arbitrary and not semantically significant.

Table 1: Prefixes and Namespaces used in this specification.

Prefix Namespace

gsdl "http://www.gridforum.org/namespaces/2002/07/gridServices"

wsdl "http://www.w3.org/2002/07/wsdl"

wsil "http://schemas.xmlsoap.org/ws/2001/10/inspection/"

http "http://www.w3.org/2002/06/wsdl/http"

xsd "http://www.w3.org/2001/XMLSchema"

xsi "http://www.w3.org/2001/XMLSchema-instance"

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 6

Namespace names of the general form "http://example.org/..." and "http://example.com/..."
represent application or context-dependent URIs [RFC 2396].

In this document we use bold font face to emphasize WSDL defined elements and properties, as
well as elements and properties of WSDL extensions defined in this document.

The following abbreviations and terms are used in this document:

• GSH: Grid Service Handle, as defined in Section 4.6.

• GSR: Grid Service Reference, as defined in Section 4.6.

• SDE: Service Data Element, as defined in Section 4.3.

• SDD: Service Data Description, as defined in Section 4.3.

• The terms Web services, XML, SOAP, WSDL, and WS-Inspection are as defined in [Grid
Physiology].

The term hosting environment is used in this document to denote the server in which one or more
Grid service implementations run. Such servers are typically language and/or platform specific.
Examples include native Unix and Windows processes, J2EE application servers, and Microsoft
.NET.

Unresolved issues with the specification are interspersed in appropriate locations through this
specification, are highlighted in yellow, and begin with “Issue N:”, where N is the GGF OGSI
working group bugzilla database bug number for this issue. This database is located at
http://www.gridforum.org/ogsi-wg/bugzilla.

3 Setting the Context
Although [Grid Physiology] describes overall motivation for the Open Grid Services
Architecture, this document describes the architecture at a more detailed level. Correspondingly,
there are several details we examine in this section that help put the remainder of the document in
context. Specifically, we discuss the relationship between OGSA and distributed object systems,
and also the relationship that we expect to exist between OGSA and the existing Web services
framework, examining both the client-side programming patterns and a conceptual hosting
environment for Grid services.

We emphasize that the patterns described in this section are enabled but not required by OGSA.
We discuss these patterns in this section to help put into context certain details described in the
other parts of this document.

3.1 Relationship to Distributed Object Systems
As we describe in much more detail below, a given Grid service implementation is an
addressable, and potentially stateful, instance that implements one or more interfaces described
by WSDL portTypes. Grid service factories (Section 9) can be used to create instances of a given
portType. Each Grid service instance has a unique identity with respect to the other instances in
the system. Each instance can be characterized as state coupled with behavior published through
type-specific operations. The architecture also supports introspection in that a client application
can ask a Grid service instance to return information describing itself, such as the collection of
portTypes that it implements.

Grid service instances are made accessible to (potentially remote) client applications through the
use of a Grid Service Handle (Section 4.6.2) and a Grid Service Reference (Section 4.6.1). These
constructs are basically network-wide pointers to specific Grid service instances hosted in

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 7

(potentially remote) execution environments. A client application can use a Grid Service
Reference to send requests (represented by the operations defined in the portType(s) of the target
service) directly to the specific instance at the specified network-attached service endpoint
identified by the Grid Service Reference.

Each of the characteristics introduced above (stateful instances, typed interfaces, unique global
names, etc.) is frequently also cited as a fundamental characteristic of so-called distributed
object-based systems. However, there are also various other aspects of distributed object models
(as traditionally defined) that are specifically not required or prescribed by OGSA. For this
reason, we do not adopt the term distributed object model or distributed object system when
describing this work, but instead use the term Open Grid Services Architecture, thus emphasizing
the connections that we establish with both Web services and Grid technologies.

Among the object-related issues that are not addressed within OGSA are implementation
inheritance, service mobility, development approach, and hosting technology. The Grid service
specification does not require, nor does it prevent, implementations based upon object
technologies that support inheritance at either the interface or the implementation level. There is
no requirement in the architecture to expose the notion of implementation inheritance either at the
client side or the service provider side of the usage contract. In addition, the Grid service
specification does not prescribe, dictate, or prevent the use of any particular development
approach or hosting technology for the Grid service. Grid service providers are free to implement
the semantic contract of the service in any technology and hosting architecture of their choosing.
We envision implementations in J2EE, .NET, traditional commercial transaction management
servers, traditional procedural UNIX servers, etc. We also envision service implementations in a
wide variety of programming languages that would include both object-oriented and non-object-
oriented alternatives.

3.2 Client-Side Programming Patterns
Another important issue that we feel requires some explanation, particularly for readers not
familiar with Web services, is how OGSA interfaces are likely to be invoked from client
applications. OGSA incorporates an important component of the Web services framework: the
use of WSDL to describe multiple protocol bindings, encoding styles, messaging styles (RPC vs.
document-oriented), and so on, for a given Web service.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 8

C
lie

nt

A
pp

lic
at

io
n

Proxy

Protocol 1
(binding)
specific Stub

Protocol 2
(binding)
specific Stub

Protocol 4
(binding)
specific Stub

Protocol 3
(binding)
specific Stub

Invocation
of Web
service

client
interface

Figure 1: A possible client-side runtime architecture

Figure 1 depicts a possible (but not required) client-side architecture for OGSA. In this approach,
there is a clear separation between the client application and the client-side representation of the
Web service (proxy), including components for marshalling the invocation of a Web service over
a chosen binding. In particular, the client application is insulated from the details of the Web
service invocation by a higher-level abstraction: the client-side interface. Various runtime tools
can take the WSDL description of the Web service and generate interface definitions in a wide-
range of programming language specific constructs (e.g. Java interfaces). This interface is a front-
end to specific parameter marshalling and message routing that can incorporate various binding
options provided by the WSDL. Further, this approach allows certain efficiencies, for example,
detecting that the client and the Web service exist on the same network host, and therefore
avoiding the overhead of preparing for and executing the invocation using network protocols.
One example of this approach to Web services is Java API for XML-Based RPC [JAX-RPC].

Within the client application runtime, a proxy provides a client-side representation of remote
service instance’s interface. Proxy behaviors specific to a particular encoding and network
protocol (binding in Web services terminology) are encapsulated in a protocol (binding)-specific
stub. Details related to the binding-specific access to the Grid service, such as correct formatting
and authentication mechanics, happen here; thus, the application is not required to handle these
details itself.

We note that it is possible, but not recommended, for developers to build customized code that
directly couples client applications to fixed bindings of a particular Grid service. Although certain
circumstances demand potential efficiencies gained this style of customization, this approach
introduces significant inflexibility into the system and therefore should be used under
extraordinary circumstances.

3.3 Relationship to Hosting Environment
OGSA does not dictate a particular service provider-side implementation architecture. A variety
of approaches are possible, ranging from implementing the Grid service directly as an operating
system process to a sophisticated server-side component model such as J2EE. In the former case,

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 9

most or even all support for standard Grid service behaviors (invocation, lifetime management,
registration, etc.) is encapsulated within the user process, for example via linking with a standard
library; in the latter case, many of these behaviors will be supported by the hosting environment.

Grid
service
impl.

protocol
termination

D
em

ar
sh

al
lin

g
/ D

ec
od

in
g

/
R

ou
tin

g

container

protocol
termination

protocol
termination

Grid
service
impl.

Figure 2: Two alternative approaches to the implementation of argument demarshalling functions in

a Grid Service hosting environment

Figure 2 illustrates these differences by showing two different approaches to the implementation
of argument demarshalling functions. We assume that, as is the case for many Grid services, the
invocation message is received at a network protocol termination point (e.g., an HTTP servlet
engine), which converts the data in the invocation message into a format consumable by the
hosting environment. At the top of Figure 2, we illustrate two Grid services (the ovals) associated
with container-managed components (for example EJBs within a J2EE container). Here, the
message is dispatched to these components, with the container frequently providing facilities for
demarshalling and decoding the incoming message from a format (such as an XML/SOAP
message) into an invocation of the component in native programming language. In some
circumstances (the lower oval), the entire behavior of a Grid service is completely encapsulated
within the component. In other cases (the upper oval), a component will collaborate with other
server-side executables, perhaps through an adapter layer, to complete the implementation of the
Grid services behavior. At the bottom of Figure 2, we depict another scenario wherein the entire
behavior of the Grid service, including the demarshalling/decoding of the network message, has
been encapsulated within a single executable. Although this approach may have some efficiency
advantages, it provides little opportunity for reuse of functionality between Grid service
implementations.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 10

A container implementation may provide a range of functionality beyond simple argument
demarshalling. For example, the container implementation may provide lifetime management
functions, intercepting lifetime management functions and terminating service instances when a
service lifetime expires or an explicit destruction request is received. Thus, we avoid the need to
re-implement these common behaviors in different Grid service implementations.

4 The Grid Service
The purpose of this document is to specify the interfaces and behaviors that define a Grid service.
In brief, a Grid service is a WSDL-defined service that conforms to a set of conventions relating
to its interface definitions and behaviors. In this section, we expand upon this brief statement by:

• Introducing a set of WSDL conventions that we make use of in our Grid service
specification;

• Defining Grid service description and Grid service instance, as organizing principles for
the extensions and their use;

• Defining how time is modeled in OGSA;

• Defining service data, which provides a standard way for representing and querying
meta-data and state data from a service instance;

• Defining the Grid Service Handle and Grid Service Reference constructs, which we use
to refer to Grid service instances;

• Providing example WSDL documents illustrating the extensibility elements;

• Defining a common approach for conveying fault information from operations;

• Defining the lifecycle of a Grid service instance.

In subsequent sections, we introduce various portTypes, starting with the GridService portType
that must be supported by any Grid service, and then proceeding to HandleResolver, Notification,
and the remainder of the portTypes that describe fundamental behavior of Grid services.

4.1 WSDL Extensions and Conventions
Web services technologies are designed to support loosely coupled, coarse-grained dynamic
systems. As such, they do not fully address all needs of the types of distributed systems that
OGSA is defined to support. To close this gap, this specification defines a set of WSDL
extensions (defined using extensibility elements allowed by the WSDL language) and
conventions on the use of Web services, which we list in Table 2and define in more detail in
subsequent sections. We emphasize that the extensions are not specific to Grid computing per se,
but have general applicability within Web services as a means of structuring complex and long-
lived stateful applications. We advocate their adoption within the broader Web services standards
bodies such as the W3C.

Table 2: Proposed WSDL conventions and extensions introduced by OGSA

Concept WSDL
Element

Brief Description See
Section

Service state
data and meta-
data

serviceData serviceData elements represent
properties of the service’s state that
may be externally queried. Some
serviceData elements may appear as

4.3

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 11

serviceData elements may appear as
extensions of the service’s description,
as part of the service’s type.

Service data
description

serviceData
Description

Formal descriptions of serviceData
elements. These descriptions appear as
extensions of the Grid service’s WSDL.

4.4.2

Interface
Naming

convention
on
portType
name

Naming conventions and immutability
of portType names.

4.2

Grid Service
Reference

N/A Mechanism to convey capabilities of a
service to a client. Can be a WSDL
document.

4.6.1

Grid Service
Handle

N/A Conventional use of URI to act as
unique identifier of a Grid service
instance.

4.6.2

This draft is based on extensions to the WSDL language proposed by the W3C Web Services
Description Working Group [WSDL 1.2]. In particular, we are relying upon the following new
constructs proposed for WSDL 1.2 (draft):

• open content model (extensibility elements appearing in each WSDL element)

• portType extension.

4.2 Service Description and Service Instance
We distinguish in OGSA between the description of a Grid service and an instance of a Grid
service:

• A Grid service description describes how a client interacts with service instances. This
description is independent of any particular instance. Within a WSDL document, the Grid
service description is embodied in the most derived portType (i.e. the portType
referenced by the wsdl:service element describing the service) of the instance, along with
its associated portTypes, serviceDataDescriptions, messages, and types definitions.

• A Grid service description may be simultaneously used by any number of Grid service
instances, each of which:

o embodies some state with which the service description describes how to
interact;

o has one or more unique Grid Service Handles;

o and has one or more Grid Service References to it.

A common form of Grid Service Reference (defined in section 4.6.1) is a WSDL
document comprising a service element, which carries an attribute that refers to a most
derived portType defined by the service description of that instance.

A service description is primarily used for two purposes. First, as a description of a service
interface, it can be used by tooling to automatically generate client interface proxies, server
skeletons, etc. Second, it can be used for discovery, for example, to find a service instance that

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 12

implements a particular service description, or to find a factory that can create instances with a
particular service description.

The service description is meant to capture both interface syntax, as well as (in a very
rudimentary, non-normative fashion) semantics. Interface syntax is, of course, described by
portTypes.

Semantics may be inferred through the name assigned to the portType. For example, when
defining a Grid service, one defines zero or more uniquely named portTypes, and then collects a
set of portTypes defined from a variety of sources into a final or most derived portType. Concise
semantics can be associated with each of these names in specification documents – and perhaps in
the future through Semantic Web or other formal descriptions. These names can then be used by
clients to discover services with the sought-after semantics, by searching for service instances and
factories with the appropriate names. Of course, the use of namespaces to define these names
provides a vehicle for assuring globally unique names.

4.3 Modeling Time in OGSA
Issue 55: WS-Timestamp is a component of WS-Security that is being standardized in OASIS.
We need to examine how OGSi is modelling time and reconcile.

Throughout this specification there is the need to represent time that is meaningful to multiple
parties in the distributed Grid. For example: information may be tagged by a producer with
timestamps in order to convey that information’s useful lifetime to consumers; clients need to
negotiate service instance and registration lifetimes with services; and multiple services may need
a common understanding of time in order for clients to be able to manage their simultaneous use
and interaction.

The GMT global time standard is assumed for Grid services, allowing operations to refer
unambiguously to absolute times. However, assuming the GMT time standard to represent time
does not imply any particular level of clock synchronization between clients and services in the
Grid. In fact, no specific accuracy of synchronization is specified or expected by this
specification, as this is a service-quality issue.

Grid service hosting environments and clients SHOULD utilize the Network Time Protocol
(NTP) or equivalent function to synchronize their clocks to the global standard GMT time.
However, clients and services MUST accept and act appropriately on messages containing time
values that might be out of range due to inadequate synchronization, where “appropriately” MAY
include refusing the use the information associated with those time values. Furthermore, clients
and services requiring global ordering or synchronization at a finer granularity than their clock
accuracies or resolutions allow for MUST coordinate through the use of additional
synchronization service interfaces, such as through transactions or synthesized global clocks.

4.4 Service Data Concept
Issue 56: There continues to be confusion over the use of and motivation for the serviceData
concept. We need to add non-normative text to clarify why an existing approach with operations
getXXX, where XXX is the name of a variable, is not sufficient.

In order to support discovery, introspection, and monitoring of Grid service instances, we
introduce the concept of service data, which refers to descriptive information about a Grid service
instance, including both meta-data (information about the service instance) and state data
(runtime properties of the service instance). We begin with a non-normative review of the
components of the service data concept and their relationships.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 13

Each Grid service instance has an associated set of service data elements (SDEs). Each SDE is
represented in XML by a serviceData element (see Section 4.4.1). Each SDE can be used to
model a separate property of the service:
<serviceData name=”gsdl:portType”> …
<serviceData name=”gsdl:queryExpressionTypes”> …
<serviceData name=”tns:configuration”> …
<serviceData name=”tns:cpuSpeed”> …
…

ServiceData elements are roughly analogous to instance variables in a class definition in some
object-oriented programming language. However, service data elements represent read-only state
data.

Issue 51: Writeable SDEs. Should we add an operation to Grid service to allow clients to change
serviceData?

A serviceData element is a named container that MUST contain zero or more XML elements of
some XML type. We refer to each XML element as a service data value element, and the
complete set of elements within an SDE as the service data value. The service data value in the
following serviceData element consists of 3 service data value elements:
<serviceData name=”gsdl:queryExpressionTypes”>

<queryExpressionType>gsdl:queryByServiceDataName
</queryExpressionType>
<queryExpressionType>gsdl:queryByXQuery</queryExpressionType>
<queryExpressionType>sql:queryBySQL</queryExpressionType>

</serviceData>

Note: all of the service data value elements in the service data element are of the same XML type
(in this case, gsdl:queryExpressionType).

Each Grid service instance is associated with a set of SDEs. This set is modeled as a
serviceDataSet (see Section 4.4.3). The following is an example of a serviceDataSet for some
Grid service instance:
<serviceDataSet>

<serviceData name=”tns:cpuSpeed”>
<gsdl:float>12.5”</gsdl:float>

</serviceData>
<serviceData name=”gsdl:queryExpressionTypes”>

<queryExpressionType>gsdl:queryByServiceDataName
</queryExpressionType>
<queryExpressionType>gsdl:queryByXQuery</queryExpressionType>
<queryExpressionType>sql:queryBySQL</queryExpressionType>

</serviceData>
<serviceData name=”tns:configuration”>

<tns:cpuConfig> …
</tns:cpuConfig>

</serviceData>
…
</serviceDataSet>

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 14

There are two ways that SDEs are associated with a Grid service instance’s serviceDataSet:
SDEs that appear in the Grid service’s description and SDEs that are dynamically added to the
Grid service at runtime.

Those SDEs that appear in a Grid service’s service description are called structural SDEs..
Structural SDEs are serviceData elements that appear as extensibility elements in the portType
elements associated with a service description.
<wsdl:portType name=”cpuResource”>

<serviceData name=”tns:manufacturer” …
<serviceData name=”tns:cpuSpeed” …
<serviceData name=”tns:configuration” …

…
</wsdl:portType>

A structural SDE declares that any Grid service instance implementing the given portType
MUST include an SDE of the same name in its serviceDataSet. The serviceData element that
appears in a service description MAY also indicate the initial service data value for the SDE.
<wsdl:portType name=”CPU”>
…

<serviceData name=”tns:manufacturer” …>
<tns:manufName>chipsRUs.com</tns:manufName>

</serviceData>
…

The SDE value of many SDEs MAY change over the lifetime of the Grid service instance. For
some SDEs, its value never changes at runtime; others may change SDE value frequently.

SDEs that are added to the Grid service instance’s serviceDataSet at runtime are called non-
structural SDEs. Non-structural SDEs are not declared within the Grid service instance’s service
description. Otherwise, non-structural SDEs are the same as structural SDEs. Thus a Grid service
instance’s serviceDataSet contains the complete set of SDEs (both structural and non-structural)
associated with that Grid service instance. A client can determine the complete set of SDEs
associated with any Grid service instance by examining the ServiceDataNames SDE defined in
the GridService portType (See Section 6.1).

A Grid service’s serviceDataSet MAY be accessible to clients in two ways. A Grid service
instance MUST implement the FindServiceData operation of the GridService portType (see
Section 6.2.1), which provides a simple, extensible, client-initiated query against the instance’s
serviceDataSet. A Grid service instance MAY additionally implement the NotificationSource
portType that provides the Subscribe operation (see Section 8.1.2.1). This operation enables a
client to ask a Grid service instance to notify it of subsequent changes to its serviceDataSet.

The service data that is available for query or subscription by a client MAY be subject to policy
restrictions. This implies, for example:

• Some service data elements MAY not be available to some clients.

• Some service data value elements within an SDE MAY not be available to some clients.
Therefore, a client MAY perceive the service data element as having fewer value
elements than specified by minOccurs (see 4.4.2).

• Two different clients MAY see different service data value elements in the same
serviceData element from the same service.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 15

The characteristics of each service data element MUST be declared using a
serviceDataDescription element (see Section 4.4.2). Such a declaration, called a service data
description (SDD), specifies properties such as the name of the SDE, the XML type of the service
data value elements, how many times service data value elements may occur, whether the value
elements may change during the lifetime of the instance, etc. serviceDataDescription elements
MAY appear as part of a Grid service’s service description, as an extension of the definitions
element. For example, the description:
<wsdl:definitions …>

<serviceDataDescription name=”cpuLoad” element=”gsdl:float” …>
…
</wsdl:definitions>

Defines a template for an SDE container that would contain XML elements of type gsdl:float.

Each SDD has a name that MUST be unique amongst all serviceDataDescription elements
within its namespace. This name, when prepended with the URI of the enclosing namespace
forms a qname that is globally unique. The name property of a serviceData element MUST
correspond to the name of the SDD to which that SDE conforms.

4.4.1 serviceData
A serviceData element MAY appear as part of a portType and/or as part of a service instance’s
serviceDataSet (see Section 4.4.3). A serviceData element is a container for a collection of
service data value elements.

A serviceData element has the following non-normative grammar:
<gsdl:serviceData

name=”qname”
<-- extensibility attribute -->* >

<-- extensibility element -->*
</gsdl:serviceData>

Each serviceData element contains the following information:

• name: This attribute’s value is the qname of the serviceDataDescription (see Section
4.4.2) element that describes (defines the template for) this serviceData element. The
serviceDataDescription may come from any namespace.

• Extensibility attributes: A serviceData element MAY have other extensibility attributes,
including but not limited to:

• Lifetime declarations: As defined in Section 4.4.4, gsdl:goodFrom, gsdl:goodUntil,
and gsdl:availableUntil attributes MAY be placed on a serviceData element to
declare the lifetime characteristics of that service data element and its value.

• Application-specific: A serviceData element MAY have additional, application-
specific extensibility attributes from any namespace.

• Extensibility elements: A serviceData element MAY have other extensibility elements
including but not limited to:

• Service data value elements: The serviceData extensibility element MUST include
zero or more elements that conform to the XML element definition referred to by the

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 16

element property in the serviceDataDescription referred to by the name property. The
number of such service data value elements MUST be greater than or equal to the
value specified by the minOccurs property of the corresponding
serviceDataDescription element, and MUST be less than or equal to the value
specified by the maxOccurs property of that same serviceDataDescription element.
These serviceDataDescription properties govern the number of service data value
elements that appear in a serviceData element within a service instance’s
serviceDataSet, and do not apply to a serviceData element that appears in portType
elements.

• Application-specific: A serviceData element MAY have additional extensibility
elements from any namespace.

For structural SDEs, the initial value of the SDE MAY be determined by SDE values declared in
one or more portTypes associated with the Grid service description.

The following is an example of four serviceData declarations in a portType:
<portType name="CPU" extends “gsdl:GridService”>

…
<gsdl:serviceData name=”tns:CPUSpeed”/>

<gsdl:serviceData name="tns:CPULoad">
<gsdl:float>0.00</gsdl:float>

</gsdl:serviceData>

<gsdl:serviceData name=”tns:manufacturer” …>
<tns:manufName>chipsRUs.com</tns:manufName>

</gsdl:serviceData>

<gsdl:serviceData name=”gsdl:queryExpressionTypes”>
<gsdl:queryExpressionType>

gsdl:queryByXQuery
</gsdl:queryExpressionType>
<gsdl:queryExpressionType>

sql:queryBySQL
</gsdl:queryExpressionType>

</gsdl:serviceData>

…
</portType>

The SDDs that correspond to these serviceData elements appears in Section 4.4.2. This first
serviceData element declares that any instance that implements the “CPU” portType MUST
have a serviceData element named “tns:CPUSpeed” in its serviceDataSet. The second
serviceData element, in addition to declaring that the “tns:CPULoad” serviceData element
MUST appear in instance, also defines an initial service data value element for this serviceData
element. This value element MAY be used as part of the service description, for example during
discovery. The serviceDataDescription’s mutability attribute (See Section 4.4.2) determines
what happens to this value element in instances that implement this portType.

The third SDE declaration, “tns:manufacturerName” is similar in spirit to “tns:cpuSpeed”.

The fourth SDE declaration, “gsdl:queryExpressionTypes” is a good example of the impact of
portType extension on service data. The CPU portType is declared to be an extension of

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 17

GridService portType. As shown in Section 6.1, the GridService portType itself declares an SDE
of name “gsdl:queryExpressionTypes”:
<gsdl:serviceData name=”gsdl:QueryExpressionTypes”>

<gsdl:queryExpressionType>
gsdl:queryByServiceDataName

</gsdl:queryExpressionType>
</gsdl:serviceData>

Note that in this case, both the CPU portType and the GridService portType declares an SDE
named gsdl:QueryExpressionTypes. When multiple portTypes within a Grid service’s description
declare the same SDE, the SDE appears only once within any instance’s serviceDataSet.
Therefore the initial set of SDEs is the union of all the SDEs declared in the all the portTypes
within a Grid service’s service description. Of course, the Grid service instance’s serviceDataSet
MAY be extended with additional (non-structural) SDEs.

Further, both portTypes declare initial value for the gsdl:QueryExpressionTypes SDE. In these
cases, the initial value for the SDE in any instance’s serviceDataSet is the concatenation of all
the SDE value elements in each SDE declaration. The ordering of the concatenation is not
defined, implementations are free to use any ordering. In our example, the initial value of the
SDE for any Grid service instance implementing the CPU portType would be:
<gsdl:serviceData name=”gsdl:QueryExpressionTypes”>

<gsdl:queryExpressionType>
gsdl:queryByServiceDataName

</gsdl:queryExpressionType>
<gsdl:queryExpressionType>

gsdl:queryByXQuery
</gsdl:queryExpressionType>
<gsdl:queryExpressionType>

sql:queryBySQL
</gsdl:queryExpressionType>

</gsdl:serviceData>

The set of SDE values that appear in the service description determine the initial SDE value. The
SDE value MAY change during the lifetime of the Grid service instance.

4.4.2 serviceDataDescription
The serviceDataDescription element MUST appear as an extension of the WSDL definitions
element. It is used to describe service data elements.

The serviceDataDescription element has the following non-normative grammar:
<gsdl:serviceDataDescription

name=”NCName”
element=”qname”
minOccurs=”nonNegativeInteger”?
maxOccurs=(”nonNegativeInteger” | “unbounded”)?
instanceOnly=”boolean”?
mutability=”constant”|”append”|”mutable”?>

<wsdl:documentation />?
<-- extensibility element --> *

</gsdl:serviceDataDescription>

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 18

Each serviceDataDescription element contains the following information:

• name: A name for this service data description, which MUST be unique amongst all
serviceDataDescription names within the namespace in which it is defined.

• element: The qualified name of the XML element definition whose instances MAY
appear as service data value elements contained in any serviceData element that
conforms to this serviceDataDescription. Note: a wsdl:import element MAY be used to
suggest a possible location for further information about the namespaces associated with
the value of the element property.

• minOccurs: The minimum number of service data value elements, each conforming to
the XML element defined by the element attribute, which MUST be contained in an SDE
that conforms to this SDD. If this attribute is omitted, then it defaults to 1.

• maxOccurs: The maximum number of service data value elements, each conforming to
the XML element defined by the element attribute, which MUST be contained in an SDE
that conforms to this SDD. If this attribute is omitted, then it defaults to 1.

• instanceOnly: Structural SDEs should not be assigned an initial value in the service
description; the initial SDE value MUST be assigned after the Grid service instance is
created.

• mutability: The value of this attribute determines the way in which developers can
expect the SDE value to change during runtime. For structural SDEs, the initial SDE
value is determined by the service description. For non-structural SDEs the initial value is
determined when the SDE is associated with the Grid service instance’s serviceDataSet.
There are three possible values for this attribute:
• mutability=”constant”: this implies that the SDE value should not change during

the lifetime of the Grid service instance. For some SDEs, the initial SDE value is
non-empty. In this case, the initial SDE value is exactly the SDE value for the entire
lifetime of the instance. In the case where the initial SDE value is empty, it is
permissible, at initialization time, for the instance to assign an initial SDE value.
After this initial assignment, the set MUST NOT change for the lifetime of the Grid
service instance.

• mutability=”append”: this implies the elements in the initial SDE value is
guaranteed to be part of the SDE value for the lifetime of the Grid service. Additional
elements can be added to the SDE value, but once these elements are added, they
cannot be removed.
Issue: 46 There is a possible additional mutability enum value, that might deal with
"loose append" ie once something is added, it may subsequently disappear from the
set.

• mutability=”mutable”: this implies any of the element in the SDE value may be
removed at anytime, and others may be added. There is no statement of guarantee
that any of the initial value set is present in the SDE.

Some example SDDs:
<gsdl:serviceDataDescription

name=”CPUSpeed”
element=”gsdl:float”
minOccurs=”1”
maxOccurs="1"
mutability=”mutable”>

<wsdl:documentation>

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 19

Example definition of a measurement of CPU speed
</wsdl:documentation>

</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”CPULoad”
element=”gsdl:float”
minOccurs=”1”
maxOccurs="1"
mutability=”mutable”>

<wsdl:documentation>
Example definition of a measurement of CPU load

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription>
name=”manufacturer”
element=”tns:manufName”
minOccurs=”1”
maxOccurs="1"
mutability=”constant”>

<wsdl:documentation>
The name of the manufacturer. This is fixed at initialization
time and does not change.

</wsdl:documentation>
</gsdl:serviceDataDescription>

4.4.3 serviceDataSet and Instance Service Data
A set of serviceData elements MAY be aggregated into a serviceDataSet element, which has the
following non-normative grammar:
<gsdl:serviceDataSet>

<gsdl:serviceData …> *
…

</gsdl:serviceData>
</gsdl:serviceDataSet>

Each Grid service instance MUST make available exactly one serviceDataSet element, against
which it evaluates all FindServiceData (Section 6.2.1) and Subscribe (Section 8.1.2.1) operation
requests from its clients.

An instance’s serviceDataSet element MUST include all serviceData elements declared in the
instance’s portType(s). The serviceDataSet MAY also include additional serviceData elements
that are not declared in the instance’s portType (i.e. non-structural SDEs).

This specification does not dictate how the service data set and its elements are represented
internally within the runtime of a Grid service instance. The GridService portType (Section 6)
provides a FindServiceData operation that allows clients to issue queries against this collection
of logical XML elements, and the NotificationSource portType (Section 8.1) provides a
Subscribe operation that allows clients to subscribe to changes to this same logical collection.
We use the term logical since there is no requirement for the Grid service implementation to
actually maintain the service data set and its elements in a persistent form. Instead, a Grid service
instance MAY choose to create the XML elements dynamically from other data sources at the
time the FindServiceData operation is invoked, and as necessary to generate notification
messages as a result of the Subscribe operation.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 20

4.4.4 XML Element Lifetime Declaration Properties
Since service data elements may represent point-in-time observations of dynamic state of a
service instance, it is critical that consumers of service data be able to understand the valid
lifetimes of these observations. The client MAY use this time-related information to reason about
the validity and availability of the serviceData element and its value, though the client is free to
ignore the information at its own discretion.

We define three XML attributes, which together describe the lifetimes associated with an XML
element and its sub-elements. These attributes MAY be used in any XML element that allows for
extensibility attributes, including the serviceData element.

The three lifetime declaration properties are:

• gsdl:goodFrom=”xsd:dateTime”: Declares the time from which the content of the
element is said to be valid. This is typically the time at which the value was created.

• gsdl:goodUntil=”xsd:dateTime”: Declares the time until which the content of the
element is said to be valid. This property MUST be greater than or equal to the
goodFrom time.

• gsdl:availableUntil=”xsd:dateTime”: Declares the time until which this element itself
is expected to be available, perhaps with updated values. Prior to this time, a client
SHOULD be able to obtain an updated copy of this element. After this time, a client
MAY no longer be able to get a copy of this element. This property MUST be greater
than or equal to the goodFrom time.

We use the following serviceData element example to illustrate and further define these lifetime
declaration attributes:
<wsdl:definitions

targetNamespace=”http://example.com/ns”
xmlns:n1=”http://example.com/ns”
… >

<wsdl:types>
<xsd:schema …

targetNamespace=http://example.com/ns
…>
<xsd:element name=”e1” type=”n1:MyType”/>
<xsd:complexType name="MyType">

<xsd:sequence>
<xsd:element name="e2" type="xsd:string" minOccurs="1"/>
<xsd:element name="e3" type="xsd:string" minOccurs="1"/>
<xsd:element name="e4" type="xsd:string" minOccurs="0"/>

</xsd:sequence>
<anyAttribute namespace="##any"/>
</xsd:complexType>

</xsd:schema>
</wsdl:types>
…
<gsdl:serviceDataDescription

name=”MySDE”
element=”n1:e1”
minOccurs=”1”
maxOccurs=”1”
mutability=”mutable”/>

…

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 21

<wsdl:portType name=”MyPortType”>
…
<gsdl:serviceData name=”n1:MySDE” />
…

<wsdl:portType>
…

</wsdl:definitions>

And within the service instance’s serviceDataSet:
<gsdl:serviceData

name=”n1:MySDE”
goodFrom="2002-04-27T10:20:00.000-06:00"
goodUntil=”2002-04-27T11:20:00.000-06:00”
availableUntil=”2002-04-28T10:20:00.000-06:00”>

<n1:e1>
<n1:e2>

abc
</n1:e2>
<n1:e3 gsdl:goodUntil=”2002-04-27T10:30:00.000-06:00”>

def
</n1:e3>
<n1:e4 gsdl:availableUntil=”2002-04-27T20:20:00.000-06:00”>

ghi
</n1:e4>

</n1:e1>
</gsdl:serviceData>

The goodFrom and goodUntil attributes of the serviceData element refer to the service data
value contained in the serviceData element’s extensibility element, which in this example is the
element n1:e1, which conforms to the type “n1:MyType”. These attributes declare to the
consumer of this SDE what the expected lifetime is for this element’s value, which in this
example is from 10:20am until 11:20am EST on 27 April 2002. In other words, the consumer of
the SDE is being advised that after 1 hour the service data value is likely to no longer be valid,
and therefore the client should query the service again for the SDE with the same name
(n1:MySDE) to obtain a newer value of n1:e1.

The availableUntil does not refer to the service data value of the SDE, but rather to the
availability of this named serviceData element itself. Prior to the declared availableUntil time, a
client SHOULD be able to query the same service instance for an updated value of this named
SDE. In this example, a client should be able to query the same service until 28 April 2002
10:20am EDT for the serviceData element named n1:MySDE, and receive a response with an
updated copy of the n1:e1 value. However, after that time, such a query MAY result in a response
indicating that no such service data element exists. In other words, the consumer of the SDE is
being advised that it can expect to be able to obtain an updated value of this named SDE for 1
day, but after that time the service may no longer have an SDE with the name n1:MySDE.

It is sometimes not sufficient for lifetime information of a SDE to refer only to the complete
service data value. Rather, the value of a SDE may contain sub-elements with different lifetimes
than those declared in the serviceData element. Any XML element contained within a
serviceData element MAY use any combination of the goodFrom, goodUntil, and
availableUntil attributes, assuming that the schema for that element allows for these extensibility
attributes. Such attributes on sub-elements override the default values specified on parent
elements. There are no constraints on the values of these attributes in the sub-elements, relative to

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 22

those specified in the parent elements, except that the ordering constraints between the effective
goodFrom, goodUntil and availableUntil values for any element must be maintained.

In the above example, the lifetime attributes carried in the serviceData element provide default
values for all children of that element. For example, the n1:e2 element uses these default values,
as described above. However, the n1:e3 element overrides the goodUntil attribute, thus stating
that its value (“def”) is only expected to be valid for 10 minutes, instead of 1 hour as is declared
in the serviceData element. Such a situation might arise if a portion of a complex element
changes more quickly than other portions of the element. Likewise, the n1:e4 element overrides
the availableUntil, thus stating that the n1:e4 element may no longer exist within n1:e1 after 10
hours. In other words, after 10 hours, a client that queries for the value of this serviceData
element MAY be returned a n1:e1 element that does not contain a n1:e4 sub-element. This
example, of course, assumes that the MyType schema allows for n1:e4 to be an optional element,
and thus be omitted from n1:e1.

It is RECOMMENDED that the XML schema for elements that are intended to be service data
values allow all elements within their schema to be extended with these lifetime declaration
properties, in order to allow for fine-grained lifetime declarations. However, since the
serviceData element supports extensible properties, service data values that lack property
extensibility can be enclosed with a serviceData element with the appropriate the lifetime
declarations for that entire value.

Since a SDE MAY be an observation or “by-value copy” of service instance state or some other
definitive source of the data, a processor of these properties MUST NOT assume that they
necessarily reflect temporal aspects of that definitive source, unless otherwise specified (for
example, in the semantic specification of a particular service data element). So the fact that a
serviceData element has a particular goodUntil value does not necessarily imply that the
underlying definitive source of that data will not change prior to that time.

If these attributes do not appear on an element, then the goodFrom, goodUntil and availableUntil
properties are unknown.

4.4.5 The wsdlLocation attribute
Service data elements contain qnames that refer to WSDL-defined elements. For example, the
serviceData element’s name attribute is the qname of its serviceDataDescription, and some
service data values may contain qnames referring to various WSDL elements.

When a serviceData element appears within a WSDL document, the standard wsdl:import
mechanism MUST be used when providing location information for resolving qname namespaces
to WSDL documents.

However, when a serviceData element appears outside of a WSDL document (for instance, in a
serviceDataSet, or in a response message to FindServiceData), the gsdl:wsdlLocation attribute
MAY be used to provide location information for resolving qname namespaces to WSDL
documents. This attribute is defined by the following schema definition:
<xsd:attribute name=”wsdlLocation” type=”xsd:string”>

The content of the gsdl:wsdlLocation attribute mirrors that of xsi:schemaLocation: it MUST be
a series of URI and URL pairs, where the first item of each pair MUST be a namespace URI and
the second item MUST be a URL. The URL SHOULD resolve to a WSDL document that defines
elements in that namespace.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 23

When a service data element appears within a WSDL document, gsdl:wsdlLocation MUST NOT
be used in place of the standard wsdl:import mechanism.

4.5 Interface Naming and Change Management
A critical issue in distributed systems is enabling the upgrade of services over time. This implies
in turn that clients need to be able to determine when services have changed their interface and/or
implementation. Here, we discuss this issue and some of the OGSA mechanisms, requirements,
and recommendations that are used to address it.

4.5.1 The Change Management Problem
The semantics of a particular Grid service instance are defined by the combination of two things:

1. Its interface specification. Syntactically, a Grid service’s interface is defined by its
service description, comprising its portTypes, operations, serviceDataDescriptions,
messages, and types. Semantically, the interface typically is defined in specification
documents such as this one, though it may also be defined through other formal
approaches.

2. The implementation of the interface. While expected implementation semantics may be
implied from interface specifications, ultimately it is the implementation that truly
defines the semantics of any given Grid service instance. Implementation decisions and
errors may result in a service having behaviors that are ill-defined in and/or at odds with
the interface specification. Nonetheless, such an implementation semantics may come to
be relied upon by clients of that service interface, whether by accident or by design.

In order for a client to be able to reliably discover and use a Grid service instance, the client must
be able to determine whether it is compatible with both of these two semantic definitions of the
service. In other words, does the Grid service support the portType that the client requires? And
does the implementation have the semantics that the client requires, such as a particular patch
level containing a critical bug fix?

Further, Grid service descriptions will necessarily evolve over time. If a Grid service description
is extended in a backward compatible manner, then clients that require the previous definition of
the Grid service should be able to use a Grid service that supports the new extended description.
Such backward compatible extensions might occur to the interface definition, such as through the
addition of a new operation or service data description to the interface, or the addition of optional
extensions to existing operations. Or, backward compatible extensions might occur through
implementation changes, such as a patch that fixes a bug. For example, a new implementation
that corrects an error that previously caused an operation to fail would generally be viewed as
being backwards compatible.

However, if a Grid service description is changed in a way that is not backward compatible, a
client MUST be able to recognize this as well. Again, this could be the result of incompatible
changes to the interface or implementation of a Grid service. A bug fix that “fixes” an
“erroneous” behavior that users have learned to take advantage of might not be considered
backward compatible.

This discussion points to the need to be able to provide concise descriptions of both the interface
and implementation of a Grid service, as well as to make unambiguous compatibility statements
about Grid services that support different interfaces or implementations.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 24

4.5.2 Naming Conventions for Grid Service Descriptions
In WSDL, each portType is globally and uniquely named via its qualified name—that is, the
combination of the namespace containing the portType definition, and the locally unique name
of the portType element within that namespace. In OGSA, our concern with change management
leads us to require that all elements of a Grid service description MUST be immutable. The
qname of a Grid service portType, operation, message, serviceDataDescription and underlying
type definitions MAY be assumed to refer to one and only one WSDL/XSD specification. If a
change is needed, a new portType MUST be defined with a new qname—that is, defined with a
new local name, and/or in a new namespace.

Issue 24: Several people have commented on the need to loosen the immutability statement to say
that a service description must be immutable once the service designer no longer has control of all
possible clients of instances that use that description. The wording in this specification supports
this interpretation because the MUST, MAY, etc. indicate what assumptions a compliant client or
service implementation may make. A designer with full control of the client and hosting
environment implementations can propagate changes without relying on features in the
specification. However, this needs to be expressed more clearly in the text. (TBD: Resolve
according to the minutes of 2002-09-06J.)

Issue 25: Some people have expressed the concern that the statement of immutability of service
descriptions is too strict for small, backward compatible additions to a portType. One suggestion
is to add some notion of a version number as a constant service data element. (TBD: Resolve
according to the minutes of 2002-09-06J.)

TBD: Add text on service instance extension: portType of a running instance may change only to
a type that extends the previous one. (Minutes of 2002-09-06J.)

4.6 Naming Grid Service Instances: Handles and References
Each Grid service instance is globally, uniquely, and for all time named by one or more Grid
Service Handles (GSH). However, a GSH is just a minimal name in the form of a URI, and does
not carry enough information to allow a client to communicate directly with the service instance.
Instead, a GSH must be resolved to a Grid Service Reference (GSR). A GSR contains all
information that a client requires to communicate with the service via one or more network
protocol bindings.

Like any URI, a GSH consists of a scheme, followed by a string containing information that is
specific to the scheme. The scheme indicates how one interprets the scheme-specific data to
resolve the GSH into a GSR, within the bounds of the requirements defined below. A client MAY
choose to resolve GSHs itself, or it MAY choose to outsource all resolution, for example, to a
pre-configured service that implements the HandleResolver portType (see Section 7).

The format of the GSR is specific to the binding mechanism used by the client to communicate
with the Grid service instance. For example, if an RMI/IIOP binding were used, the GSR would
take the format of an IOR. If a SOAP binding were used, the GSR would take the form of a
properly annotated WSDL document.

While a GSH is valid for the entire lifetime of the Grid service instance, a GSR may become
invalid, therefore requiring a client to resolve the GSH into a new, valid GSR.

4.6.1 Grid Service Reference (GSR)
Grid service instances are made accessible to (potentially remote) client applications through the
use of a Grid Service Reference (GSR). A GSR is typically a network-wide pointer to a specific

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 25

Grid service instance that is hosted in an environment responsible for its execution. A client
application can use a GSR to send requests (represented by the operations defined in the WSDL
portType(s) of the target service) directly to the specific instance at the specified (potentially
network-attached) service endpoint identified by the GSR. In other words, the GSR supports the
programmatic notion of passing Grid service instances "by reference". The GSR contains all of
the information required to access the Grid service instance resident in its hosting environment
over one or more communication protocol bindings. However, a GSR may be localized to a given
client context or hosting environment, and the scope of portability for a GSR is determined by the
binding mechanism(s) it supports.

The encoding of a Grid Service Reference may take many forms in the system. Like any other
operation message part, the actual encoded format of the GSR "on the wire" is specific to the
Web service binding mechanism used by the client to communicate with the Grid service
instance. Below we define a WSDL encoding of a GSR that MAY be used by some bindings, but
the use of any particular encoding is defined in binding specifications, and is therefore outside of
the scope of this specification.

However, it is useful to elaborate further on this point here. For example, if an RMI/IIOP binding
were used, the GSR would be encoded as a CORBA compliant IOR. If a SOAP binding were
used, the GSR may take the form of the WSDL encoding defined below. This "on the wire" form
of the Grid Service Reference is created both in the Grid service hosting environment, when
references are returned as reply parameters of a WSDL defined operation, and by the client
application or its designated execution environment when references are passed as input
parameters of a WSDL defined operation. This "on the wire" form of the Grid Service Reference,
passed as a parameter of a WSDL defined operation request message, SHOULD include all of the
service endpoint binding address information required to communicate with the associated
service instance over any of the communication protocols supported by the designated service
instance, regardless of the Web service binding protocol used to carry the WSDL defined
operation request message.

Any number of Grid Service References to a given Grid service instance MAY exist in the
system. The lifecycle of a GSR MAY be independent of the lifecycle of the associated Grid
service instance. A GSR is valid when the associated Grid service instance exists and can be
accessed through use of the Grid Service Reference, but validity MAY only be detected by the
client attempting to utilize the GSR. A GSR MAY become invalid during the lifetime of the Grid
service instance. Typically this occurs because of changes introduced at the Grid service hosting
environment. These changes MAY include modifications to the Web service binding protocols
supported at the hosting environment, or of course, the destruction of the Grid service instance
itself. Use of an invalid Grid Service Reference by a client SHOULD result in an exception being
presented to the client.

When a Grid Service Reference is found to be invalid and the designated Grid service instance
exists, a client MAY obtain a new GSR using the Grid Service Handle of the associated Grid
service instance, as defined in Section 4.6.2. For convenience, the Grid Service Handle MAY be
contained within a binding-specific implementation of the Grid Service Reference.

A binding-specific implementation of a Grid Service Reference MAY include an expiration time,
which is a declaration to clients holding that GSR that the GSR SHOULD be valid prior to that
time, and it MAY NOT be valid after the expiration time. After the expiration time, a client MAY
continue to attempt to use the GSR, but SHOULD retrieve a new GSR using the GSH of the Grid
service instance. While an expiration time provides no guarantees, it nonetheless is a useful hint
in that it allows clients to refresh GSRs at convenient times (perhaps simultaneously with other

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 26

operations), rather than simply waiting until the GSR becomes invalid, at which time it must
perform the (potentially time-consuming) refresh before it can proceed.

Mere possession of a GSR does not entitle a client to invoke operations on the Grid service. In
other words, a GSR is not a capability. Rather, authorization to invoke operations on a Grid
service instance is an orthogonal issue, to be addressed elsewhere.

4.6.1.1 WSDL Encoding of a GSR
It is RECOMMENDED that a WSDL document that encodes a GSR be the minimal information
required to describe fully how to reach the particular Grid service instance. This information will
commonly be just the WSDL service element, which in turn contains references (qnames) to
elements in other namespaces of the other WSDL elements that are non-instance specific.

Issue 37: Should there be an element within wsdl:service to carry the GSH and/or expiration
time?

4.6.2 Grid Service Handle (GSH)
Handles have the following properties:

1. A GSH MUST be a valid URI [RFC 2396].

2. A GSH MUST globally, uniquely, and for all time refer to the same Grid service
instance. A GSH MUST NOT ever refer to more than one Grid service instance, whether
or not they exist simultaneously. See Section 4.6.2.1 for the definition of “same Grid
service instance.”

3. A Grid service instance MUST have at least one GSH.

4. A Grid service instance MAY have multiple GSHs that use different URI schemes.

5. A Grid service instance MAY have multiple GSHs that use the same URI scheme, if it is
allowed by that URI scheme. However, the specification for a particular URI scheme
MAY restrict this property by only allowing a single GSH within that URI scheme to a
Grid service instance.

6. The GridServiceHandles service data element (Section 6.1) of a Grid service instance
MUST contain only GSHs that refer to that instance. If two GSHs are contained in a Grid
service instance’s GridServiceHandles SDE, then they MUST both refer to that same
Grid service instance.

7. There MAY be multiple GSRs that refer to the same Grid service instance.

8. Multiple resolutions of the same GSH MAY result in different GSRs. A resolver MAY
return different GSRs for the same GSH at different times, and it MAY return different
GSRs to different clients that are resolving the same GSH.

9. A GSH MAY be unresolvable to a GSR before, during, or after the existence of the Grid
service instance to which the GSH refers. However, the specification for a particular URI
scheme MAY define a stronger quality of service for resolution. For example, a particular
URI scheme MAY guarantee that resolution during the instance’s lifetime, and to a
reliable statement of termination after the instance has terminated.

10. A client’s trust of a service may be handled in any way the client chooses, and therefore
resolution of a GSH to a GSR MAY be either a trusted or an untrusted operation,
depending on, for example, the configuration of the client, or the definition of the

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 27

resolution protocol. This specification permits, but does not require, a client to trust the
resolution of a GSH to a GSR.

4.6.2.1 Service Instance Sameness
The interpretation of “same Grid service instance” is dependent upon the semantics of a service’s
description. A service instance may be implemented in any way, as long as it obeys the semantics
associated with its service description (i.e. the portType that the service instance implements).

For example, the implementation of a service MAY be distributed or replicated across multiple
resources, as long as it obeys the semantics associated with its service description. A single GSH
would be associated with this service, though that GSH may resolve to different GSRs referring
to different resources, based on such factors as resource availability and utilization, locality of a
client, client privileges, etc. Some service descriptions may require tight state coherency between
the replicated implementations -- for example, the semantics of the service description may
require that the service move through a series of well-defined states in response to a particular
sequence of messages, thus requiring state coherence regardless of how GSHs are resolved to
GSRs. However, other service descriptions may be defined that allow for looser consistency
between the various members of the distributed service implementation.

4.6.3 XML types for handles, references and locators
Three XML type definitions are introduced so that handles and references may be introduced into
typed message parts in the operation signatures of a WSDL service interface definition. The
gsdl:serviceReference type contains a Grid Service Reference. The gsdl:serviceHandle type
contains a Grid Service Handle. The gsdl:serviceLocator type contains zero or more GSHs and
zero or more GSRs; it is used by various operations in this specification that may accept either a
GSH or a GSR.

4.7 Grid Service Lifecycle
The lifecycle of any Grid service is demarked by the creation and destruction of that service. The
actual mechanisms by which a Grid service is created or destroyed are fundamentally a property
of the hosting environment, and as such are not defined in this document. There is nonetheless a
collection of related portTypes defined in this specification that specify how clients may interact
with these lifecycle events in a common manner. As we describe in subsequent sections:

• A client may request the creation of a Grid service by invoking the createService
operation on a Factory service. (A service instance that implements a portType that
extends the Factory portType.)

• A client may request the destruction of a Grid service via either client invocation of an
explicit destruction operation request to the Grid service (see the Destroy operation,
supported by the GridService portType: Section 6) or via a soft-state approach, in which
(as motivated and described in [Grid Physiology]) a client registers interest in the Grid
service for a specific period of time, and if that timeout expires without the service
having received re-affirmation of interest from any client to extend the timeout, the
service may be automatically destroyed. Periodic re-affirmation can serve to extend the
lifetime of a Grid service as long as is necessary (see the SetTerminationTime operation
in the GridService portType: Section 6).

In addition, a Grid service MAY support notification of lifetime-related events, through the
standard notification interfaces defined in Section 8.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 28

A Grid service MAY support soft state lifetime management, in which case a client negotiates an
initial service instance lifetime when the Grid service is created through a factory (Section 9), and
authorized clients MAY subsequently send SetTerminationTime (“keepalive”) messages to
request extensions to the service's lifetime. If the Grid service termination time is reached, the
server hosting the service MAY destroy the service, reclaim any resources associated with the
service, and remove any knowledge of the service maintained in handle resolvers under its
control.

Termination time MAY change non-monotonically. That is, a client MAY request a termination
time that is earlier than the current termination time. If the requested termination time is before
the current time, then this SHOULD be interpreted as a request for immediate termination.

A Grid service MAY decide at any time to extend its lifetime. A service MAY also terminate
itself at any time, for example if resource constraints and priorities dictate that it relinquish its
resources.

4.8 Common Handling of Operation Faults
TBD: We will define a small collection of base fault messages that may be used by the
portTypes defined in this document. These faults will be described in this section in a subsequent
version of this document. An XML schema of various XML types and wsdl:parts that define
common fault messages for reuse amongst the operations defined in this specification and
operations defined in domain-specific portTypes will appear with the final XML definition of
Grid Services.

5 Grid Service Interfaces
A Grid service MUST implement the GridService portType, or a portType that extends the
GridService portType. (See Section 6).

This specification defines a collection of common distributed computing patterns that are
considered to be fundamental to OGSA. The embodiment of these patterns appears as WSDL
portTypes. The collection of portTypes specified in this document is listed in Table 3.

The task for the designer of components within OGSA is to design portTypes that extend a
combination of the GridService portType, other optional portTypes defined in this
specification, and application or domain specific portTypes. .

Table 3 Summary of the portTypes defined in this document

PortType Name See
Section

Description

GridService 6 encapsulates the root behavior of the component model

HandleResolver 7 mapping from a GSH to a GSR

NotificationSource 8.1 allows clients to subscribe to notification messages

NotificationSubscription 8.2 defines the relationship between a single NotificationSource
and NotificationSink pair

NotificationSink 8.3 defines a single operation for delivering a notification
message to the service instance that implements the
operation

Factory 9 standard operation for creation of Grid service instances

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 29

Registration 10.2 allows clients to register and unregister registry contents

All of these portTypes (except of course for GridService) extend the GridService portType.

In the subsequent sections, all portTypes and serviceDataDescriptions are defined in the gsdl
namespace.

6 The GridService PortType
In this section and those that follow, we describe the various standard portTypes that are defined
by OGSA.

We start with the GridService portType, which MUST be implemented by all Grid services and
thus serves as the base interface definition in OGSA. This portType is analogous to the base
Object class within object-oriented programming languages such as Smalltalk or Java, in that it
encapsulates the root behavior of the component model. The behavior encapsulated by the
GridService portType is that of querying against the serviceDataSet of the Grid service instance,
and managing the termination of the instance.

In Web services interface design, there is a choice to be made between document-centric
messaging patterns and remote procedure call (RPC). Using a document-centric approach, the
interface designer defines a loosely coupled interaction pattern wherein the API to the service is
defined in terms of document exchange; both input and output are XML documents. This
approach shifts the complexity of the interaction away from the API level and into the data format
of the document exchange itself. This style tends to yield simpler, more flexible APIs. The RPC
approach defines a specific, strongly-typed operation signature. This approach tends to produce
less flexible API, but is often easier to map onto APIs of existing objects and can have better
runtime performance.

Designers of Grid service interfaces also face the document-centric vs. RPC choice, and have
attempted to take a middle road. The GridService portType provides several operations with
typed parameters, but leaves considerable extensibility options within several of those
parameters. Service data is then used to express what specific extensibility elements a particular
service instance understands. Grid service designers are free to mix and match the document-
centric and RPC approaches in the portTypes that they design to compose with those described
here.

6.1 GridService PortType: Service Data Descriptions and Elements
The GridService portType includes serviceData elements conformant to the following
serviceDataDescription elements1:
<gsdl:serviceDataDescription

name=”PortType”
element=”gsdl:portTypeName”
minOccurs=”1”
maxOccurs=”1”
mutability=”constant”>

<wsdl:documentation>
The qname of the portType implemented by this Grid service.

</wsdl:documentation>
</gsdl:serviceDataDescription>

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 30

<gsdl:serviceDataDescription
name=”ServiceDataNames”
element=”gsdl:serviceDataName”
minOccurs=”0”
maxOccurs=”unbounded”
mutability=”mutable”>

<wsdl:documentation>
A set of qnames, one for each service data element contained
in this service instance. Note:the minOccurs corresponds to
the number of serviceDataDescription elements in this
GridService portType that are required (that have minOccurs > 0).

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”FactoryHandle”
element=”gsdl:serviceHandle”
minOccurs=”0”
maxOccurs=”1”
mutability=”constant”>

<wsdl:documentation>
The Grid Service Handle to the factory that created
this Grid service instance, if appropriate.

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”GridServiceHandles”
element=”gsdl:serviceHandle”
minOccurs=”1”
maxOccurs=”unbounded”
mutability=”append”>

<wsdl:documentation>
The Grid Service Handles of this Grid service instance.
It is possible to have multiple handles, for example one
for each handle scheme that might be deployed.

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”GridServiceReferences”
element=”gsdl:serviceReference”
minOccurs=”1”
maxOccurs=”unbounded”
mutability=”mutable”>

<wsdl:documentation>
A set of Grid Service References to this Grid service instance.
One service data value element MUST be the WSDL representation
of the GSR. Other service data value elements may represent
other forms of the WSDL.

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”QueryExpressionTypes”
element=”gsdl:queryExpressionType”

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 31

minOccurs=”1”
maxOccurs=”unbounded”
mutability=”append”>

<wsdl:documentation>
A set of qnames of element declarations. Any conforming
element MAY be used by the client as FindServiceData's
QueryExpression parameter.

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”TerminationTime”
element=”gsdl:terminationTime”
minOccurs=”1”
maxOccurs=”1”
mutability=”mutable”>

<wsdl:documentation>
The earliest and latest termination times for the grid service
(see 6.2.2).

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name="CurrentTime"
element="gsdl:currentTime "
minOccurs="1"
maxOccurs="1"
mutability="mutable">

<wsdl:documentation>
The current time as known to this service. This value can be
used to gauge the clock skew of this service relative to a
client.

</wsdl:documentation>
</gsdl:serviceDataDescription>

In addition, the GridService portType defines the following initial set of service data value
elements:
<gsdl:serviceData name=”gsdl:QueryExpressionTypes”>

<gsdl:queryExpressionType>
gsdl:queryByServiceDataName

</gsdl:queryExpressionType>
</gsdl:serviceData>

6.2 GridService PortType: Operations and Messages
Issue 29: Do we need an additional operation on GridService that allows a client to reliably
determine if a GSH (or perhaps two GSHs) refers to particular instance?

6.2.1 GridService :: FindServiceData
Query the service data.

Input

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 32

• QueryExpression: The query to be performed. This is an extensible parameter, which
MUST conform to an element declaration denoted by one of the QueryExpressionTypes.
Note: The service infers what to do based on the tag of the root element of this argument.

Output
• Result: The result of the query. The format of this result is dependent upon the

QueryExpression.

Fault(s)

• TBD.

Every Grid service instance MUST support QueryExpressions conforming to
queryByServiceDataName as defined in 6.2.1.1. A Grid service instance MAY support other
QueryExpressions

The list of query expression types supported by a Grid service instance is expressed in the
instance’s QueryExpressionTypes service data element. Therefore, a client can discover the
query expression types supported by a service instance by performing a FindServiceData request
on the instance, using the queryByServiceDataName element with
name=”gsdl:QueryExpressionTypes”.

The service data that is available for query by a client MAY be subject to policy restrictions. For
example, some service data elements MAY not be available to some clients, and some service
data value elements within a SDE MAY not be available to some clients.

6.2.1.1 queryByServiceDataName
A queryByServiceDataName results in the service data element that has the qname as specified
by the name property (which MUST be among the ServiceDataNames (see 6.1) contained in this
service instance).

The non-normative grammar of this type is:
<gsdl:queryByServiceDataName name=“qname”/>

The FindServiceData operation’s Result output parameter for a queryByServiceDataName
query MUST be the serviceData element that has the requested serviceDataName.

Issue 53: We should consider either extending queryByServiceDataName or define a new
queryExpression: queryByServiceDataNameCollection to allow multiple names to be specified
on the query. That way, a client can with one operation query the simultaneous values of
multiple SDEs.

6.2.1.2 queryByXPath
Issue 30: Define the XPath QueryExpressionType, QueryExpression schema, and the result
format. Support for this QueryExpressionType is optional.

6.2.1.3 queryByXQuery
Issue 31: Define the XQuery QueryExpressionType, QueryExpression schema, and the result
format. Support for this QueryExpressionType is optional.

6.2.2 GridService :: RequestTerminationAfter
Request that the termination time of this service be changed. The request specifies the earliest
desired termination time. Upon receipt of the request, the service MAY adjust its termination

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 33

time, if necessary, based on its own polices and the requested time. Upon receipt of the response,
the client SHOULD discard any responses that have arrived out of order, based on the
CurrentTimestamp in the response.

Input:

• TerminationTime: The earliest termination time of the Grid service that is acceptable to
the client. A value in the past indicates that the client no longer cares about the earliest
termination time. The special value “infinity” means that the client requests that the
service continue to exist indefinitely.

Output:
• CurrentTimestamp: The time at which the Grid service handled the request.

• CurrentTerminationTime: The service's currently planned termination time (as described
below).

Fault(s):

•
The CurrentTerminationTime returned by this operation is of the form given by the following
non-normative grammar:
<terminationTime

after=”gsdl:extendedDateTime”
before=”gsdl:extendedDateTime” />

This element describes the service’s current plans for termination. The “after” attribute gives the
earliest time at which the service plans to terminate. A value in the past indicates that the service
may terminate at any time. The special value “infinity” indicates that the service plans to exist
indefinitely. The “before” attribute gives the latest time at which the service plans to terminate.
A value in the past indicates that the service is trying to terminate. The special value “infinity”
indicates that the service has no plans to terminate. The maximum time MUST be greater than or
equal to the minimum time.

6.2.3 GridService :: RequestTerminationBefore
Request that the termination time of this service be changed. The request specifies the latest
desired termination time. Upon receipt of the request, MAY adjust its termination time, if
necessary, based on its own polices and the requested time. Upon receipt of the response, the
client SHOULD discard any responses that have arrived out of order, based on the timestamp in
the response.

Input:

• TerminationTime: The latest termination time of the Grid service that is acceptable to the
client. A time in the past indicates a desire that te service terminate as soon as possible.
The special value “infinity” indicates that the client no longer cares about a maximum
termination time.

Output:
• CurrentTimestamp: The time at which the Grid service handled the request.

• CurrentTerminationTime: The service's currently planned termination time (as described
in 6.2.2).

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 34

Fault(s):

•

6.2.4 GridService :: Destroy
Explicitly request destruction of this service. Upon receipt of an explicit destruction request, a
Grid service MUST either initiate its own destruction and return a response acknowledging the
receipt of the destroy message; or ignore the request and return a fault message indicating failure.
Once destruction of the Grid service is initiated, the service SHOULD NOT respond to further
requests. Following a successful Destroy() call, the client SHOULD NOT rely on the existence
of the service.

Input:

• None

Output:

• None, indicting that the destroy has been initiated. Some services may strengthen this to
mean that the service destruction is effectively complete.

Fault(s):

• ServiceNotDestroyed, indicating that the service chose not to initiate self-destruction.

7 The HandleResolver PortType
A handle resolver is a Grid service instance that implements the HandleResolver portType.

Issue 17: The authoring team is divided on the recommendations regarding the role of the
resolver protocol vs the use of HandleResolver. Should there be language such as: “Clients
SHOULD use one or more HandleResolver services to resolve GSHs to GSRs. The handle
resolver protocols discussed in this section SHOULD NOT normally be used by clients, but
SHOULD be used by HandleResolver services only.”

Each GSH scheme defines a particular resolver protocol for resolving a GSH of that scheme to a
GSR. Some schemes, such as the http and https schemes defined in Section 4.6.2, MAY not
require the use of a HandleResolver service, as they are based on some other resolver protocol.
However, there are two situations where a Grid service based resolver protocol MAY be used,
and which therefore motivates the definition of a standard HandleResolver portType. First, a
GSH scheme MAY be defined that uses the HandleResolver as a fundamental part of its resolver
protocol, where the GSH carries information about to which HandleResolver service instance a
client should send resolution requests. Second, in order to avoid placing undo burden on a client
by requiring it to directly speak various resolver protocols, a client instead MAY be configured to
outsource any GSH resolutions to a third party HandleResolver service. This outsourced handle
resolver MAY in turn speak the scheme-specific resolver protocols directly. Both of these
situations are addressed through the definition of the HandleResolver portType.

Various handle resolvers may have different approaches as to how they are populated with GSH
to GSR mappings. Some handle resolvers may be tied directly into a hosting environment’s
lifetime management services, such that creation and destruction of instances will automatically
add and remove mappings, through some out-of-band, hosting-environment-specific means.
Other handle resolver services may implement the Registration portType, such that whenever a
service instance registers its existence with the resolver, that resolver queries the
GridServiceHandles and GridServiceReferences service data elements of that instance to
construct its mapping database. Other handle resolver services may implement a custom

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 35

registration protocol via a custom portType. But in all of these cases, the HandleResolver
portType MAY be used to query the resolver service for GSH to GSR mappings.

7.1 HandleResolver PortType: Service Data Descriptions
The HandleResolver portType includes serviceData elements conformant to the following
serviceDataDescription elements:
<gsdl:serviceDataDescription

name=”HandleResolverSchemes”
element=”xsd:anyURI”
minOccurs=”0”
maxOccurs=”unbounded”
mutability=”mutable”>

<wsdl:documentation>
A set of URIs that correspond to the handleResolver schemes that
the HandleResolver implements.

</wsdl:documentation>
</gsdl:serviceDataDescription>

7.2 HandleResolver PortType: Operations and Messages

7.2.1 HandleResolver :: FindByHandle
Returns a serviceLocator, which contains one or more Grid Service References for a Grid Service
Handle.

Input

• Handle: A Grid Service Handle.

• GSRSet: (optional) a set of one or more GSRs that the client already possesses that are
not satisfactory for some reason. This is a hint from the client that these existing
references should not be returned in response to this message.

Output
• Locator: A service locator containing one or more Grid Service References, and zero or

more alternate Grid Service Handles to the same service instance.

Fault(s)
• InvalidHandle, indicating that the handle violates the syntax of its URI scheme.

• NoAdditionalReferencesAvailable, indicating that the resolver service cannot return a
GSR that is not already contained in the GSRSet input parameter.

• NoReferencesAvailable, indicating that the resolver service is unable to return a GSR for
the input handle, irregardless of the GSRSet input parameter.

• Redirection, indicating an alternate handle resolver to which the client MAY direct the
request. The GSH of the alternate handle resolver is returned with the fault.

• NoSuchService, indicating that either there was never a service with this handle, or the
service with this handle has terminated. This fault MAY only be applicable to some URI
schemes.

• NoSuchServiceStarted, indicating that there was never a service with this handle.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 36

• ServiceHasTerminated, indicating that the service with this handle has terminated. This
fault MAY only be applicable to some URI schemes.

• TemporarilyUnavailable, indicating that the handle refers to a valid service, but that it
cannot be resolved to a valid reference at this time, though it may be resolvable later.
This fault optionally returns a time at which the service MAY be available. This fault
MAY only be applicable to some URI schemes.

8 Notification
Issue 57: We need to discuss this mechanism in more depth. We have gotten several requests for
"Topics" and "events" and it is not clear we can model these as SDEs. This is a place holder and
I suspect more commentary text will be added to flesh this concern out.

The purpose of notification is to deliver interesting messages from a notification source to a
notification sink, where:

• A notification source is a Grid service instance that implements the NotificationSource
portType, and is the sender of notification messages. A source MAY be able to send
notification messages to any number of sinks.

• A notification sink is a Grid service instance that receives notification messages from any
number of sources. A sink MAY implement the DeliverNotification operation of the
NotificationSink portType, which allows it to receive notification messages of any type.
Alternatively, a sink MAY implement a specialized notification delivery operation from a
different portType, where that operation is a specialization of the DeliverNotification
operation. A specialized delivery operation MAY only accept a subset of the types of
messages that the general DeliverNotification operation can accept, and like
DeliverNotification is an input-only operation (i.e. it does not return a response).

• A notification message is an XML element sent from a notification source to a
notification sink. The XML type of that element is determined by the subscription
expression.

• A subscription expression is an XML element that describes what messages should be
sent from the notification source to the notification sink. The subscription express also
describes when messages should be sent, based on changes to values within a service
instance’s serviceDataSet.

• In order to establish what and where notification messages are to be delivered, a
subscription request is issued to a source, containing a subscription expression, the
serviceLocator of the notification sink to which notification messages are to be sent, the
portType and operation name of the specialized notification delivery operation to which
notification messages should be sent, and an initial lifetime for the subscription.

• A subscription request causes the creation of a Grid service instance, called a
subscription, which implements the NotificationSubscription portType. This portType
MAY be used by clients to manage the (soft-state) lifetime of the subscription, and to
discover properties of the subscription.

This notification framework allows for either direct service-to-service notification message
delivery, or for the ability to integrate various intermediary delivery services. Intermediary
delivery services might include: messaging service products commonly used in the commercial
world, message filtering services, message archival and replay services, etc.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 37

8.1 The NotificationSource PortType
The NotificationSource portType allows clients to subscribe to notification messages from the
Grid service instance that implements this portType.

8.1.1 NotificationSource PortType: Service Data Descriptions and Elements
The NotificationSource portType includes serviceData elements conformant to the following
serviceDataDescription elements:
<gsdl:serviceDataDescription

name=”NotifiableServiceDataNames”
element=”gsdl:serviceDataName”
minOccurs=”0”
maxOccurs=”unbounded”
mutability=”mutable”>

<wsdl:documentation>
A set of qualified names of service data elements to
which a client MAY subscribe for notification of changes.

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”SubscriptionExpressionTypes”
element=”gsdl:subscriptionExpressionType”
minOccurs=”1”
maxOccurs=”unbounded”
mutability=”append”>

<wsdl:documentation>
A set of qnames of element declarations. Any conforming
element MAY be used by the client as Subscribe's
SubscriptionExpression parameter.

</wsdl:documentation>
</gsdl:serviceDataDescription>

The NotificationSource portType would also include the following initial service data value
elements:
<gsdl:serviceData

name=”gsdl:SubscriptionExpressionTypes”>
<gsdl:subscriptionExpressionType

type="gsdl:subscribeByServiceDataName"/>
</gsdl:serviceData>

8.1.2 NotificationSource PortType: Operations and Messages

8.1.2.1 NotificationSource :: Subscribe
Subscribe to be notified of subsequent changes to the target instance’s service data. This
operation creates a Grid service subscription instance, which MAY subsequently be used to
manage the lifetime and discovery properties of the subscription.

Input:

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 38

• SubscriptionExpression: The subscription to be performed. This is an extensible
parameter, which MUST conform to an element declaration referred to by one of the
QueryExpressionTypes qnames.

• Sink: The serviceLocator of the notification sink to which messages will be delivered.
This locator MAY be to some other service than the one that is issuing this subscription
request, thus allowing for third-party subscriptions.

• SpecializedNotificationDeliveryOperation (optional): The name of the operation, and the
qname of the portType in which that operation is defined, to be used by the notification
source when delivering messages to the notification sink. The operation signature MUST
be the same as, or a specialization of, the NotificationSink::DeliverNotification operation.
If this parameter is not specified, then it defaults to the “DeliverNotification” operation
name that is defined in the gsdl:NotificationSink portType.

• ExpirationTime: The initial time at which this subscription instance should terminate, and
thus notification delivery to this sink be halted. Normal GridService lifetime management
operations MAY be used on the subscription instance to change its lifetime.

Output:
• SubscriptionInstanceLocator: A serviceLocator to the subscription instance that was

created to manage this subscription. This subscription instance MUST implement the
NotificationSubscription portType.

Fault(s):
Every Grid service instance that implements the NotificationSource portType MUST support a
SubsciptionExpressionType of subscribeByServiceDataName as defined in 8.1.2.1.1. A Grid
service instance MAY support other SubscriptionExpressionTypes.

The list of subscription expression types supported by a Grid service instance is expressed in the
instance’s SubscriptionExpressionTypes service data element. Therefore, a client can discover
the subscription expression types supported by a service instance by performing a
FindServiceData request on the instance, using a queryByServiceDataName element, which
contains the name “gsdl:SubscriptionExpressionTypes”.

The service data that is available for subscription by a client MAY be subject to policy
restrictions. For example, some service data elements MAY not be available to some clients, and
some service data value elements within a SDE MAY not be available to some clients.

8.1.2.1.1 subscribeByServiceDataName
A subscribeByServiceDataName results in notification messages being sent whenever the
named service data element changes.

The non-normative grammar of this type is:
<gsdl:subscribeByServiceDataName

name=“xsd:qname”
minInterval=”xsd:duration”?
maxInterval=(”xsd:duration”|”unbounded”)? >

</gsdl:subscribeByServiceDataName>

The minInterval property specifies the minimum interval between notification messages,
expressed in xsd:duration. If this property is not specified, then the notification source MAY

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 39

choose this value. A notification source MAY also reject a subscription request if it cannot satisfy
the minimum interval requested.

The maxInterval property specifies the maximum interval between notification messages,
expressed in xsd:duration. If this interval elapses without a change to the named service data
element’s value, then the source MUST resend the same value. When the value is “unbounded”
the source need never resend a service data value if it does not change. If this property is not
specified, then the notification source MAY choose this value.

For a subscribeByServiceDataName subscription, the type of the notification message sent from
the notification source to the notification sink MUST be the serviceData element that has the
requested serviceDataName.

8.2 The NotificationSubscription PortType
A subscription for notification causes the creation of a Grid service subscription instance, which
MUST implement the NotificationSubscription portType. This instance MAY be used by clients
to manage the lifetime of the subscription, and discover properties of the subscription.

8.2.1 NotificationSubscription PortType: Service Data Descriptions
The NotificationSubscription portType includes serviceData elements conformant to the
following serviceDataDescription elements:
<gsdl:serviceDataDescription

name=”SubscriptionExpression”
element=”gsdl:subscriptionExpression”
minOccurs=”1”
maxOccurs=”1”
mutability=”constant”>

<wsdl:documentation>
The current subscription expression managed by this
subscription instance.

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”SinkLocator”
element=”gsdl:serviceLocator”
minOccurs=”1”
maxOccurs=”1”
mutability=”constant”>

<wsdl:documentation>
The Grid Service Locator of the Notification sink to
which this subscription is delivering messages.

</wsdl:documentation>
</gsdl:serviceDataDescription>

8.2.2 NotificationSubscription PortType: Operations and Messages
None.

8.3 The NotificationSink PortType
A notification sink portType defines a single operation for delivering a notification message to
the service instance that implements the operation.Issue 58: Need to be careful about this it is

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 40

overly restrictive. If you allow the subscribe operation to be passed a GSR (read WSDL) then the
“Sink” could be any WebService not restricted to just GridServices. I think this is a good thing
that lets “Sink”s be lighter weight

8.3.1 NotificationSink PortType: Service Data Descriptions
None.

8.3.2 NotificationSink PortType: Operations and Messages

8.3.2.1 NotificationSink :: DeliverNotification
Deliver message to this service.

Input:

• Message: An XML element containing the notification message. The content of the
message is dependent upon the notification subscription.

Output:
The service does not reply to this request.

Fault(s):

8.4 Integration With Notification Intermediaries
While the NotificationSource and NotificationSink define how notification messaging is
performed between two parties, these same portTypes can be used in various combinations to
allow for third-party services to intermediate the notification process.

For example, an intermediary notification service may implement the NotificationSink portType
in order to receive notification messages from some other sources, as well as the
NotificationSource portType to send notifications to other subscribing sinks. The intermediary
may simply forward the notification messages on to subscribers, or it may transform them in
various ways by making service data elements available to subscribers that are different than
SDEs of the original notification source. Intermediary notification sources are generally
characterized by the fact that their serviceData elements have originator properties that refers to
other service instances, rather than to themselves.

Intermediary notification services may be used for a variety of purposes, including:

• To provide for a notification source service that has a lifetime that is independent from
that of the notification source service that originally generated the message.

• To filter, modify, aggregate, and/or archive notification messages from other sources.

• To represent third party messaging services, which may transport notification messages
with different delivery protocols, semantics, and/or qualities of service.

The third purpose, integrating messaging service products, deserves further explanation. Such
messaging service products can be exploited in this framework by:

1. Defining an intermediary messaging service instance that implements both the
NotificationSource and NotificationSink portTypes, as well as possibly other portTypes
for managing the behavior of the messaging service product.

2. This intermediary messaging service instance can then subscribe to various notification
source. Note that the client issuing the subscription request need not be the same Grid

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 41

service instance as the notification sink designated in the subscription request to receive
notification messages. This property allows for clients to stitch together notification
message paths, without being directly in those paths.

3. The intermediary messaging service instance can advertise various notification topics
service data elements for which it produces notification messages, relating to any
incoming notification messages it receives via its sink interface. For example, for any
notification message that it receives through its sink interface, it may resend it to
subscribers with a particular quality of service.

4. The intermediary messaging service instance may have its own efficient, scalable,
message distribution network, thus allowing the incoming message to be efficiently
delivered to a large number of subscribing sinks. Or it may guarantee delivery of the
notification message for some period of time, even in the face of various failures. Or it
may distribute incoming notification messages to sinks in a round-robin fashion, rather
then sending all notification messages to all sinks. The possible behaviors that the
intermediary messaging service instance can introduce to the notification message
delivery are limitless.

5. The intermediary messaging service instance, the originating notification source service,
and the final notification sink service may all implement a specialized network protocol
binding to optimize the transmission of the notification messages. For example, if the
intermediary messaging service instance represents a particular message service product
with its own custom protocol, implementing that protocol as a Grid service network
protocol binding allows the integration of this product and its protocols, without requiring
different interfaces or models to be imposed on the sources and sinks.

9 The Factory PortType
From a programming model perspective, a factory is an abstract concept or pattern. A factory is
used by a client to create an instance of a Grid service. A client invokes a create operation on a
factory and receives as response a serviceLocator for the newly created service. This specification
defines one approach to realizing the factory pattern as a Grid service. OGSA uses a document-
centric approach to define the operations of the basic factory. Service providers can, if they wish,
define their own factories with specifically typed operation signatures.

In OGSA terms, a factory is a Grid service that MUST implement the Factory portType, which
provides a standard WSDL operation for creation of Grid service instances. A factory MAY of
course also implement other portTypes (in addition to the required GridService portType), such
as:

• Registration (Section10), which allows clients to inquire of the factory as to what Grid
service instances created by the factory are in existence.

Upon creation by a factory, the Grid service instance MUST be registered with, and receive a
GSH from, a handle resolution service (see Section 7). The method by which this registration is
accomplished is specific to the hosting environment, and is therefore outside the scope of this
specification.

Issue 5: Consider adding another factory related portType that allows for management of the set
of portTypes that a factory may create. Perhaps allow for downloading of code into the factory
when adding a service.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 42

9.1 Factory PortType: Service Data Descriptions
The Factory portType includes serviceData elements conformant to the following
serviceDataDescription elements:
<gsdl:serviceDataDescription

name=”CreatesPortTypes”
element=”gsdl:portTypeName”
minOccurs=”1”
maxOccurs=”unbounded”
mutability=”append”

<wsdl:documentation>
QNames to most derived portTypes of service instances that can
be created by this Factory.

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”CreationInputTypes”
element=”gsdl:creationExpressionType”
minOccurs=”0”
maxOccurs=”unbounded”
mutability=”append”

<wsdl:documentation>
Qnames of XML elements supported by this Factory for the
ServiceParameters argument of the CreateService operation.

</wsdl:documentation>
</gsdl:serviceDataDescription>

9.2 Factory PortType: Operations and Messages

9.2.1 Factory :: CreateService
Create a new Grid service instance. Note that to support soft state lifetime management (Section
4.7), a client may specify an initial termination time, within a window of earliest and latest
acceptable initial termination times. The factory selects an initial termination time within this
window, and returns this to the client as part of its response to the creation request. Additionally,
the factory returns the maximum lifetime extension that clients can subsequently request of this
new Grid service instance. Alternatively, the Grid service creation request may fail if the
requested termination time is not acceptable to the factory.

Input

• TerminationTime (optional): The earliest initial termination time of the Grid service
instance that is acceptable to the client.

• ServiceParameters (optional): An XML document that is specific to the factory and the
services that it creates.

Output

• ServiceLocator: A serviceLocator to the newly created Grid service instance.

• ServiceTimestamp: The time at which the Grid service was created.

• CurrentTerminationTime: The Grid service’s currently planned termination time.

• MaximumExtension: The maximum extension that the Grid service will currently allow a
client to request of its termination time.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 43

• ExtensibilityOutput (optional): An XML extensibility element that is specific to the
factory and the services that it creates.

Fault(s):

Issue 19: Can we reduce the number of output parameters in Factory::CreateService by moving
many of them into service data of the created instance?

10 Registration
Issue: 52 It is becoming more clear that the Registration portType is overloaded. I recommend
that we refactor Registration portType into two (or more) portTypes. There are several models
being debated.

A registry is a Grid service that maintains a collection of Grid Service Handles, with policies
associated with that collection. Clients may query the registry to discover what services are
available.

A registry implements the Registration portType, in order to allow clients to register and
unregister registry contents. Because a registry is a Grid service, it must also implement the
GridService portType. A registry MAY implement custom portType that define service data
elements that are structured to support particular types of queries against the registry. The
FindServiceData (see Section 6.2.1) operation provides rich query interface against the contents
of the registry that is maintained in service data. A registry's FindServiceData operation
SHOULD support the XPath query language, and MAY support other query languages. A
registry SHOULD implement the NotificationSource portType (Section 8), in order to support
notification of registry existence and changes in registry contents.

A Grid service instance MAY be a member of any number of registries, and for any portion of the
service's lifetime.

10.1 WS-Inspection Document
The registry makes available a WS-Inspection document [WSIL Oveview] to aid in discovery of
the services in that registry. This document contains information about any Grid service that has
been registered with the registry.

This WS-Inspection document can be retrieved by a client via the FindServiceData operation.

The registry's WS-Inspection document MAY have the following properties:

1. WS-Inspection WSDL service description elements that refer other Grid services
(including other registries), where the location values are the GSHs of the services.

2. WS-Inspection link elements that refer to registry services, where the location values
are the GSHs of services.

3. any other valid WS-Inspection element.

Issue 20: Should a WS-Inspection document be required of all registries? Or might a registry just
use the RegisterService operation, define its own service data to represent the contents of the
registry, and ignore the WS-Inspection document entirely? In other words, should the WS-
Inspection document be given a minOccurs=”0”, or separated out into a different portType
entirely?

10.2 The Registration portType
The Registration portType allows clients to register and unregister registry contents.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 44

10.2.1 Registration PortType: Service Data Descriptions
The following contains the serviceDataDescription elements associated with the Registration
portType:
<gsdl:serviceDataDescription

name=”RegistrationExtensibilityTypes”
element=”gsdl:registrationExtensibilityType”
minOccurs=”1”
maxOccurs=”unbounded”
mutability=”append”>

<wsdl:documentation>
A set of qnames of element declarations. Any conforming
element MAY be used by the client as RegisterService's
extensibility parameter.

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”RegistrationContentNames”
element=”gsdl:serviceDataName”
minOccurs=”0”
maxOccurs=”unbounded”
mutability=”append”>

<wsdl:documentation>
A set of names of serviceData elements relating to
registry content.

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”GridServiceRegistryWSInspection”
element=”wsil:inspection”
minOccurs=”0”
maxOccurs=”1”
mutability=”mutable”

<wsdl:documentation>
A WS-Inspection document containing all of the Grid services in
this registry. We expect that specializations of registries that
take this registration port type and combine it with other
mechanisms to do discovery (for example a specialization that
finds discovery such as “find by portType”). This portType forms
the base assumption that an inspection document is available.

</wsdl:documentation>
</gsdl:serviceDataDescription>

10.2.2 Registration PortType: Operations and Messages

10.2.2.1 Registration :: RegisterService
Add or atomically update a Grid Service Handle to the registry.

Input
• Locator: The Grid Service locator of the service to register. If the registry already

contains a registration that matches this parameter, this operation is to be treated as an
“update” to the registration information.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 45

• Extensibility: An XML fragment to be inserted as an extensibility element for this
service. This field may be used, for example to register a UDDI service description for
the service as well. This element MUST conform to an element declaration referred to by
one of the RegistrationExtensibilityTypes. Note the gsdl:emptyExtensibility element
qname can be used to make this parameter effectively optional.

Output:

• None, acknowledging receipt of the RegisterService call.

Fault(s):

•

It is worth noting that the registry has the freedom to interpret registrations of other Registration
Grid services in one of two ways. Consider the case where Registry A receives a register
operation for Registry B. Registry A can choose to treat B simply as another Grid service,
generating a WS-Inspection service element based on the GSH for B, or it can be treat B as a
WS-Inspection link element.

10.2.2.2 Registration :: UnregisterService
Remove a Grid Service Handle from the registry.

Input:
• Handle: The Grid Service Handle of the service to remove.

Output:

• None, acknowledging receipt of the UnregisterService call.

Fault(s):
• Unregistration operation failed.

11 Security Considerations
This specification defines the abstract interaction between a Grid service and clients of that
service. While it is assumed that such interactions must be secured, the details of security are out
of scope of this specification. Instead, security should be addressed in related specifications that
defined how the abstract interactions are bound to specific communication protocols, and to
specific programming environments.

12 Change Log

12.1 Draft 1 (2/15/2002) ���� Draft 2 (6/13/2002)
• Improved introduction to Section 4, “The Grid Service, and reordered the subsections to

make it flow better.

• Added Section 4.2, “Service Description and Service Instance”, containing an
explanation of service description vs service instance.

• Added/rewrote “Service Data” section (4.3) including: cleaned up serviceData container;
moved lifetime declarations out to an extensibility element that can be included on any
XML element; introduced schema to be able include service data declarations into the
WSDL service description.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 46

• Changed tables containing service data declarations to use correct XML elements that
conform to the new serviceDataDescription element

• Moved description of instanceOf to be part of the WSDL GSR description, since it is a
sub-element of the WSDL service element, which is part of the WSDL GSR.

• Removed old Section 5, “How portType Definitions are Presented”. This was subsumed
by the rewrite of Section 4, including the new service data specification.

• Removed all primary key material, including old Section 10, and references to it from the
Factory discussion.

• Simplified the schema for serviceType.

• Added Section 11, Change Log.

12.2 Draft 2 (6/13/2002) ���� Draft 3 (07/17/2002)
• Changed draft to assume new features in WSDL v1.2 draft 1, including serviceType and

an open extensibility model.

• Added serviceType reuse/extension.

• Modified notion of Handle to be a URI, reflected changes in GSR and HandleResolver
(previously called HandleMap) discussion. Introduced resolver protocols for the http and
https GSH schemes.

• Substantially changed “Service Data” section (4.3), primarily to cleanup and plug holes
in service data descriptions and elements, particularly around naming and typing.
Changed various portType descriptions to reflect this change to service data.

• Added section “Modeling Time in OGSA”

• Overhauled the notification section, to completely integrate with service data, and to
provide a “push model” that parallels the FindServiceData “pull model”.

• Renamed Registry portType to Registration, and did some cleanup on the section.

• Introduced gsdl:serviceLocator, which is an XML schema type that can be either a GSH
or GSR. Changed various GSH and GSR argument to use this type.

• Renamed “Terminology and Abbreviations” section to “Notational Conventions”. In this
section, added a table of namespace prefixes used in throughout the document, and
cleaned up the rest of the section.

• Added inline “Issue” that need to be resolved, with numbers that refer to the GGF OGSI
working group bugzilla database.

12.3 Draft 3 (07/17/2002) ���� Draft 4 (10/1/2002)
• Reformatted for GGF document compliance.

• Updated and reformatted references.

• Added “Security Considerations” section.

• TBD: “Action items” from minutes.

• Changed (in 4.4.2) the “type” attribute of SDD to be “element”, and reference an XSD
element declaration, not a type definition, resolving issue 32. The defaults for minOccurs
and maxOccurs were changed to 1 to be consistent with XML schema.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 47

• Added text to 4.4.3 about whether minOccurs>0 makes sense in light of authorization
(issue 40, M2002-08-28).

• Added non-normative text to Service Data 4.4 to help better explain/motivate the
concept.

• Added a definition of gsdl:wsdlLocation (See minutes 2002-09-06E).

• In 4.5.2, changed “gsdl:serviceType” to “gsdl:extends”.

• Added gsdl:serviceHandle and gsdl:serviceReference types (4.6.3). Changed
serviceLocator to contain sets of these.

• Added a CurrentTime SDD to GridService (M2002-09-06F).

• Removed the URI argument to GridService::FindServiceData (6.2.1). The tag of the
QueryExpression argument (a QName) is used to determine the query to be performed.
Similarly, removed the URI argument to NotificationSource::Subscribe (8.1.2.1). (Issue
33, M2002-09-06A)

• Changed SetTerminationTime to be two operations (see, 6.2.2 and 6.2.31 – see minutes
2002-08-21) and modified them according to M2002-09-06F. Also modified the
TerminationTime SDD to reflect both times.

• Modified Destroy according to 2002-09-06H minutes.

• Added to the Registration portType (10.2.1) an SDD to indicate the allowed extensibility
arguments and an SDD to indicate registration content SDEs (2002-08-28 minutes).
Also, the WSIL SDE was made optional.

• Modified RegisterService (10.2.2.1) according to 2002-09-06B minutes.

• In addition to the above, the descriptions of the following issues were removed:

Issue(s) Location Resolution

13 6.2.2 ? See minutes 2002-09-06F

14 6.2.2 See minutes 2002-08021; called “infinity”

15 6.2.2 See minutes 2002-08-21

16 6.2.2 See minutes 2002-09-06F

18 8.2.1 See minutes 2002-09-06A but element retained for
wrapping.

22, 23 4.4.4 See minutes 2002-09-06F

24, 25 4.5.2 See minutes 2002-09-06J

26, 27, 28 4.6.2 See minutes 2002-09-07

29 ??? See minutes 2002-09-07

13 Author Information
Steven Tuecke
Distributed Systems Laboratory
Mathematics and Computer Science Division

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 48

Argonne National Laboratory
Argonne, IL 60439
Phone: 630-252-8711
Email: tuecke@mcs.anl.gov

Karl Czajkowski
University of Southern California, Information Sciences Institute
Email: karlcz@isi.edu

Ian Foster
Argonne National Laboratory & University of Chicago
Email: foster@mcs.anl.gov

Jeffrey Frey
IBM
Poughkeepsie, NY 12601
Email: jafrey@us.ibm.com

Steve Graham
IBM
4400 Silicon Drive
Research Triangle Park, NC, 27713
Email: sggraham@us.ibm.com

Carl Kesselman
University of Southern California, Information Sciences Institute
Email: carl@isi.edu

Peter Vanderbilt
NASA Ames Research Center
Email: pv@nas.nasa.gov

14 Acknowledgements
We are grateful to numerous colleagues for discussions on the topics covered in this document, in
particular (in alphabetical order, with apologies to anybody we've missed) Malcolm Atkinson,
Tim Banks, Ed Boden, Brian Carpenter, Francisco Curbera, Dennis Gannon, Andrew Grimshaw,
Marty Humphrey, Keith Jackson, Bill Johnston, Kate Keahey, Gregor von Laszewski, Lee
Liming, Miron Livny, Tom Maguire, Norman Paton, Jean-Pierre Prost, John Rofrano, Thomas
Sandholm, David Snelling, Ellen Stokes, Scott Sylvester, Sanjiva Weerawarana, Von Welch and
Mike Williams.

This work was supported in part by IBM and by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, U.S. Department of Energy, under Contract W-31-109-Eng-38 and DE-AC03-
76SF0098; by the National Science Foundation; and by the NASA Information Power Grid
project.

15 Glossary

16 References

16.1 Normative References
[RFC 1738]

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 49

Uniform Resource Locators (URL), T. Berners-Lee, L. Masinter, M. McCahill, Editors.
Internet Engineering Task Force, RFC 1738, December 1994. Available at
http://www.ietf.org/rfc/rfc1738.txt.

[RFC 2119]

Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, Author. Internet
Engineering Task Force, RFC 2119, March 1997. Available at
http://www.ietf.org/rfc/rfc2119.txt.

[RFC 2246]

The TLS Protocol, Version 1.0, T. Dierks, C. Allen, Authors. Internet Engineering Task
Force, RFC 2246, January 1999. Available at http://www.ietf.org/rfc/rfc2246.txt.

 [RFC 2396]

Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L.
Masinter, Authors. Internet Engineering Task Force, RFC 2396, August 1998. Available
at http://www.ietf.org/rfc/rfc2396.txt.

 [RFC 2616]

Hypertext Transfer Protocol – HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, T. Berners-Lee, Authors. Internet Engineering Task Force, RFC
2616, June 1999. Available at http://www.ietf.org/rfc/rfc2616.txt.

[RFC 2818]

HTTP Over TLS, E. Rescorla, Author. Internet Engineering Task Force, RFC 2818, May
2000. Available at http://www.ietf.org/rfc/rfc2818.txt.

 [RFC 3023]

XML Media Types, M. Murata, S. St.Laurent, D. Kohn, Authors. Internet Engineering
Task Force, RFC 3023, January 2001. Available at http://www.ietf.org/rfc/rfc3023.txt.

 [Timestamp]

A Timestamp for Distributed Computing (Draft), D. Gunter, B. Tierney, S. Tuecke,
Authors. Global Grid Forum OGSI Working Group. Available at
http://www.gridforum.org/ogsi-wg.

[WSDL 1.2]

Web Services Description Language 1.2 (Working Draft). World Wide Web Consortium,
July 2002. Available at http://www.w3.org/TR/2002/WD-wsdl12-20020709.

16.2 Informative References
[Globus Overview]

Globus: A Toolkit-Based Grid Architecture, I. Foster, C. Kesselman, Authors. In [Grid
Book], 259-278.

[Grid Anatomy}

The Anatomy of the Grid: Enabling Scalable Virtual Organizations, I. Foster, C.
Kesselman, S. Tuecke, Authors. International Journal of High Performance Computing
Applications, 15 (3). 200-222. 2001. Available at
http://www.globus.org/research/papers/anatomy.pdf.

GWD-R (draft-ggf-ogsi-gridservice-04) October 4, 2002

ogsi-wg@gridforum.org 50

[Grid Book]

The Grid: Blueprint for a New Computing Infrastructure, I. Foster, C. Kesselman,
Editors. Morgan Kaufmann, 1999.

[Grid Physiology]

The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems
Integration, I. Foster, C. Kesselman, J. Nick, S. Tuecke, Authors. Globus Project, 2002.
Available at http://www.globus.org/research/papers/ogsa.pdf.

[JAX-RPC]

JavaTM API for XML-Based RPC (JAX-RPC). http://java.sun.com/xml/jaxrpc/docs.html

[Web Services Book]

Building Web Services with Java: Making Sense of XML, SOAP, WSDL, and UDDI, s.
Graham, S. Simeonov, T. Boubez, G. Daniels, D. Davis, Y. Nakamura, R. Neyama,
Authors. Sams, 2001.

[WSIL Overview]

An Overview of the Web Services Inspection Language, P. Brittenham, Author. 2001.
Available at http://www.ibm.com/developerworks/webservices/library/ws-wsilover.

17 XML and WSDL Specifications
This Section will contain the full WSDL types, message, and portType for each of the operations
described in this document. Watch this space.

Pending agreement from the OGSI-WG community on the directions and changes in this draft of
the specification, the authors will produce formal WSDL and related XML definitions shortly
after GGF5.

